

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

NAAC Accredited with B++ Grade

Display of Department of CS& E Sample POs, PSOs & COs

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

NAAC Accredited with B++ Grade

Display of Department of E& C Sample POs, PSOs & COs

PSO 3: Identify and Apply Domain Specific Tools For Design, Analysis, Synthesis and Validation Of VLSI, Optical Fiber Communication and

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

NAAC Accredited with B++ Grade

Display of Department of E& E Sample POs, PSOs & COs

Department of Electrical & Electronics PROGRAM OUTCOMES (PO's) Po 1:Engineering Knowledge: Apply Knowledge Of Differential Equations, Vector Calculus, Complex Variables, Matrix Theory, Probability Theory, Physics And Chemistry, Electrical And Electronic Engineering Fundamentals. PO 2:Problem Analysis: Graduates will Identify, formulate and solve complex electrical and electronics engineering problems using the first principles of mathematics natural sciences and engineering science PO 3:Design: Graduates will design Electrical and Electronics systems meeting the given specifications for different problems taking safety and precautions into consideration. PO 4:Investigations: Graduates will Perform investigations, design and conduct experiments, analyze and interpret the results to provide valid conclusions PO 5:Tool Usage: Graduates will use modern software tools to model and analyze problems, apply appropriate techniques and IT tools for the design & analysis of the systems keeping in view their limitations. PO 6:The Engineer and Society: Graduates will understand the impact of local and global issues / happenings and assess societal, health, legal and cultural issue with competency in professional engineering practice on Electrical Engineers. PO 7: Environment and Sustainability: Graduates will Demonstrate professional skills and contextual reasoning and provide sustainable solutions for problems related to Electrical and Electronics Engineering and also will understand their impact on environment. PO 8:Ethics: Graduates will have knowledge of professional ethics and code of conduct as applied to Electrical Engineers. PO 9:Individual and Team work:Graduates will work effectively as an individual and as a member or leader in diverse teams and in multi-disciplinary settings. PO 10:Communication: Graduates will communicate effectively in both verbal and written form among engineering community, being able to comprehend and write reports presentation and give / receive clear instructions. PO 11:Project Management and Finance:Graduates will plan, demonstrate and execute engineering & management principles in their own / team projects in multidisciplinary environment PO 12:Life-long learning: Graduates will have the ability for self- education, recognize the need for and have the ability to engage in independent and lifelong learning. PROGRAM SPECIFIC OUTCOMES (PSO's) PSD 1: Ability to specify architect, design and analyze systems that efficiency generate, transmit, distribute and utilize electrical power. PSO 2: Ability to specify design, prototype and test modern electronic systems that perform analog and digital processing function. PSO 3: Ability to use software for design, simulation and analysis of electrical system.

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

NAAC Accredited with B++ Grade

Display of Department of Civil Engineering Sample POs, PSOs & COs

- CO 5. Test the road aggregates and bitumen for their suitability as road material.
- CO 6. Test the soil for its suitability as sub grade soil for pavements.

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

NAAC Accredited with B++ Grade

Display of Department of Mechanical Engineering Sample POs, PSOs & COs

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

NAAC Accredited with B++ Grade

Display of POs, PSOs & COs in Laboratory Manuals

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

NAAC Accredited with B++ Grade

VTU curriculum syllabus sample copy providing COs

B. E. ELECTRICAL AND ELECTRONICS ENGINEERING

Choice Based Credit System	SEMESTER - VI	Based Education (C	JBE)				
POWER SYSTEM ANALYSIS - 1 (Core Subject)							
Course Code	18EE62	CIE Marks	4				
Number of Lecture Hours/Week (L:T:P)	3:2:0	SEE Marks	6				
Credits	04	Exam Hours	0				
Credits 04 Exam Hours 0 Course Learning Objectives: • To introduce the per unit system and explain its advantages and computation. • To explain the concept of one line diagram and its implementation in problems. • To explain the necessity and conduction of short circuit analysis. • To explain analysis of three phase symmetrical faults on synchronous machine and simple power systems. • To discuss selection of circuit breaker. • To explain symmetrical components, their advantages and the calculation of symmetrical components of voltages and currents in un-balanced three phase circuits. • To explain the concept of sequence impedance and its analysis in three phase unbalanced circuits. • To explain the concept of sequence networks and sequence impedances of an unloaded synchronous generator, transformers and transmission lines. • To explain the analysis of synchronous machine and simple power systems for different unsymmetrical faults using symmetrical components. • To discuss the dynamics of synchronous machine and derive the power angle equation for a synchronous machine. •							
Module-1	Interdention	Circle about Dame					
Representation of rower System Con Balanced Three Phase Networks, One-Lin	e Diagram and Impedance	single-phase Repre	ram Per Unit (PI)				
System Steady State Model of Synchro	nous Machine Rower To	ransformer Transm	ussion of Electrical				
Power Perresentation of Loads	nous machine, rower ri	ransiornici, fransin	ission of Licculcal				
Module-2							
Symmetrical Fault Analysis: Introduction Synchronous Machine(On No Load), Shore examples on power systems. Selection of Components: Selection of Components: Introduction, Star-Delta Transformers, Sequence Imp Sequence Network of Power System, Sequence Impedances of Transmission	n, Transient on a Transmis rt Circuit of a Loaded Sy ircuit Breakers. Symmetrical Component redances of Transmissio equence Impedances and Lines, Sequence Impeda	t Transformation, P n Lines, Sequence Networks of Syn nnces and Networks	cuit of a c, Illustrative simple hase Shift in e Impedances and chronous Machine, s of Transformers,				
Construction of Sequence Networks of a P	ower System.						
Module-4							
Unsymmetrical Fault Analysis: Introduc Faults, Single Line-To-Ground (LG) Fault	tion, Symmetrical Compo Line-To-Line (LL) Fault	nent Analysis of Un Double Line-To-G	symmetrical round (LLG)				

Fault, Open Conductor Faults.

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

NAAC Accredited with B++ Grade

COs

Module-5

Power System Stability: Introduction, Dynamics of a Synchronous Machine, Review of Power Angle Equation, Simple Systems, Steady State Stability, Transient Stability, Equal Area Criterion, Factors Affecting Transient Stability, Multi machine stability studies, classical representation. ■

Course Outcomes: At the end of the course the student will be able to:

- Model the power system components & construct per unit impedance diagram of power system.
- · Analyze three phase symmetrical faults on power system.
- Compute unbalanced phasors in terms of sequence components and vice versa, also develop sequence networks.
- · Analyze various unsymmetrical faults on power system.
- Examine dynamics of synchronous machine and determine the power system stability.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of three sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module.

Text Book

1.	Elements of Power System	William D. StevensonJr	McGraw Hill	4 th Edition, 1982
Refe	rence Books			
1	Modern Power System	D. P. Kothari	McGraw Hill	4 th Edition, 2011
	,			-
2	Power System Analysis and Design	J.Duncan Glover et al	Cengage	4 th Edition, 2008
				-
3	Power System Analysis	Hadi Sadat	McGraw Hill	1 st Edition, 2002
				-

CIPAL S.J.M.I.T, CHITRADURGA

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

NAAC Accredited with B++ Grade

Sample Internal Test question Papers with COs

Department : Elec	ctrical & El	ectronics Engg	Name of the Faculty : Dr. Manjunatha S C			
Course : Power S	ystem Anal	ysis-1	Code : 18EE62			
Semester : 6 th	Test : 1 st	Time : 2:45 PM to 3:45 PM	Max. Marks : 30			
Note : Answer any TWO full questions						

<i>Q</i> .	No.	Questions	Marks	CL	CO	PO
1	a)	Show that per unit impedance of two winding transformer will	5	R /	1	1
		remain same referred to primary as well as secondary.		U		
	b)	Define per unit quantity. Mention the advantages of per unit	5	R /	1	1
		system.		U		
	c)	Draw the reactance diagram of the system shown in fig. the	5	R	2	1
		ratings of the components are:				
		G: 15 MVA, 6.6 kV, X''= 12%				
		T1: 20 MVA, 6.6/66 kV, X = 8%				
		T2: 20 MVA, 66/6.6 kV, X = 8%				
		M1 & M2 : 5 MVA, 6.6 kV, X''= 20%				
		$\begin{array}{c c} T_{1} & T_{2} \\ \hline \\ \downarrow \\ \downarrow \\ \downarrow \\ \Box \\ \Box \\ \Box \\ \Box \\ \Box \\ \Box \\ \Box$				

2	a)	Define one line diagram. Explain with diagram.	5	R/U	1	1,2
	b)	Obtain the equivalent circuit of a synchronous machine.	5	R/U/ AP	1	2,3
	c)	A three winding transformer has rating as follows: Primary: Y connected, 6.6 kV, 15 MVA Secondary: Y connected, 33 kV, 10 MVA Tertiary: Δ connected, 2.2 kV, 7.5 MVA Leakage impedance measured from primary as $Z_{ps} = j0.232\Omega$, $Z_{pt} = j0.29\Omega$, and on the secondary side $Z_{st} = j8.7\Omega$. Find the star connected equivalent on a base of 15 MVA, 6.6 KV in the primary circuit. Neglect resistances.	5	R/U	2	1,3

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

NAAC Accredited with B++ Grade

3	a)	Obtain the equivalent circuit of two winding transformer.	5	R/ U	2	1,3
	b)	The one line diagram of an unloaded generator is shown in fig. draw the per unit impedance diagram. Choose a base of 50 MVA, 13.8 kV in the circuit of generator G ₁ . The generators and transformers are rated as follows: G ₁ : 20 MVA, 13.8 kV, X [°] = 0.2 p.u G2: 30 MVA, 18 kV, X [°] = 0.2 p.u G1: 30 MVA, 20 kV, X [°] = 0.2 p.u T1: 25 MVA, Y 220 kV/13.8kV Δ , X= 10% T2: Three single phase units each rated 10 MVA,127/18 kV, X = 10% T3: 35 MVA, 220 kV Y/22 kV Y, X=10% T3: 35 MVA, 220 kV Y/22 kV Y, X=10% T3: 35 MVA, 220 kV Y/22 kV Y, X=10% T4 χ° χ	5	R/ U	2	1,2
	c)	Obtain equivalent circuit of a three winding transformer & mention its advantages.	5	R/ U/	2	1,3

CO1: *Model the power system components & construct per unit impedance diagram of power system.*

CO2: Analyze three phase symmetrical faults on power system.

CO3: Compute unbalanced phasors in terms of sequence components and vice versa, also develop sequence networks.

CO4: Analyze various unsymmetrical faults on power system.

CO5: *Examine dynamics of synchronous machine and determine the power system stability.*

CL: COGNITIVE LEVEL (R: Remember; U: Understand; Ap: Apply; A: Analyze; E: Evaluate; C: Create)

COs

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

Department : Ele	ctrical & El	ectronics Engg	Name of the Faculty : Dr. Manjunatha S C			
Course : Power S	ystem Anal	ysis-1	Code : 18EE62			
Semester: 6 th Test: 2 nd Date: 06/05/2022 Time: 2:45 PM to 3:45 PM Max. Marks:						
Note : Answer any TWO full questions						

<i>Q. No.</i>		Questions	Marks	CL	CO	PO
1	a)	What is fault? What are the factors responsible for the faults?	7	R /	1	1
				U		
	b)	Explain the transients occurring on a transmission line on the	8	R/	1	1
		occurrence of a short circuit. Obtain the expression for		U		
		maximum momentary current.				

2	a)	Prove that X_d ''< X_d '< X_d	7	R/U	1	1,2
	b)	A synchronous generator and motor are rated for 30,000 KVA, 13.2 KV and both have sub transient reactance of 20%. The line connecting them has a reactance of 10% on the base of machine ratings. The motor is drawing 20,000 KW at 0.8 p.f. leading. The terminal voltage of the motor is 12.8 KV. When a symmetrical three phase fault occurs at motor terminals, find the sub transient current in the generator, motor and at the fault point. (using Thevnin's Theorem)	8	R/U/ AP	2	2,3

3	a)	Two generators are connected in parallel to the low voltage (LV)	8	R /	2	1,3
		side of a three phase Delta-Star transformer. The ratings of the		U		
		machines are				
		Generator G1: 50 MVA, 13.98 KV, X _d '' = 25%				
		Generator G2: 25 MVA, 13.8 KV, X _d '' = 25%				
		Transformer T: 75 MVA, 13.8KV/69 KV, X = 10%				
		Before the fault occurs, the voltage on the high voltage side of the				
		transformer is 66 KV. The transformer is unloaded and there is no				
		circulating current between the generators. Find the sub transient				
		current in each generator when a three phase fault occurs on the				
		high voltage side of the transformer.				
			7	R /	3	1,2
	b)	Write a short note on selection of circuit breakers.		U		

SJM Vidyapeetha®
S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

NAAC Accredited with B++ Grade

COs

CO1: Model the power system components & construct per unit impedance diagram of power system.

CO2: Analyze three phase symmetrical faults on power system.

CO3: Compute unbalanced phasors in terms of sequence components and vice versa, also develop sequence networks.

CO4: Analyze various unsymmetrical faults on power system.

CO5: *Examine dynamics of synchronous machine and determine the power system stability.*

CL: COGNITIVE LEVEL (R: Remember; U: Understand; Ap: Apply; A: Analyze; E: Evaluate; C: Create)

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

Department : Ele	ctrical & El	ectronics Engg	Name of the Faculty : Dr. Manjunatha S C			
Course : Power System Analysis-1			Code : 18EE62			
Semester: 6 th Test: 3 rd Date: 13/07/2022 Time: 2:45 PM to 3:45 PM Max. Marks:						
Note : Answer any TWO full questions						

Q. No.		Questions	Mar ks	CL	CO	PO
1	a)	Derive expression for symmetrical components in terms of phase voltages.	5	R/ U	2	1
	b)	Derive relation between sequence components of phase and line voltages in star connected system.	5	R/ U	2	1
	c)	A balanced delta connected load is connected to a three phase symmetrical supply. The line currents are each 10A in magnitude. If fuse in one of the lines blows out, determine the sequence components of line current.	5	R	2	1

2	a)	Draw the zero sequence components for star-star, delta-delta, and star-delta connected transformers.	5	R/U	2	1,2
	b)	Explain the sequence impedance of a synchronous generator.	5	R/U /AP	3	2,3
	c)	Draw the positive, negative and zero sequence networks for the power system shown below. Choose a base of 50 MVA, 220 kV in the 50 ohm transmission lines and mark all reactance in p.u. the ratings of the generators and transformers are: Generator 1: 25 MVA, 11 kV, $X''=20\%$ Generator 1: 25 MVA, 11 kV, $X''=20\%$ Three phase transformer (each): 20MVA, 11Y/220 Y kV. X=15%. The negative sequence reactance of each synchronous machine is equal to the sub transient reactance. The zero sequence reactance of each machine is 8%. Assume that the zero sequence reactances of lines are 250% of their positive sequence reactances.	5	R/U	4	1,3

SJM Vidyapeetha® S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

NAAC Accredited with B++ Grade

3	a)	Derive an expression for fault current in case of single line to ground fault (LG). Draw the interconnection of sequence network.	5	R/ U	3	1,3
	b)	Derive an expression for fault current in case of single line to ground fault (LLG). Draw the interconnection of sequence network.	5	R/ U	4	1,2
	c)	In a 3 phase, 3 wire system, the line currents are $I_a = 100 _ 0^0$ A and $I_b = 100 \100$ A. determine the sequence components of line currents.	5	R/ U/	5	1,3

CO1: *Model the power system components & construct per unit impedance diagram of power system.*

CO2: Analyze three phase symmetrical faults on power system.

CO3: Compute unbalanced phasors in terms of sequence components and vice versa, also develop sequence networks.

CO4: Analyze various unsymmetrical faults on power system.

CO5: *Examine dynamics of synchronous machine and determine the power system stability.*

CL: COGNITIVE LEVEL (R: Remember; U: Understand; Ap: Apply; A: Analyze; E: Evaluate; C: Create)

COs

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

NAAC Accredited with B++ Grade

Sample of COs written in Internal Test Answer Book

COURSE OUTCOME'S (COs) At the end of the course the student will be able to: \rightarrow Eaplain the construction, operation and classification of DC Motor, Ac Motor and special purpose motors. \rightarrow Describe the performance characteristics and applications of Electric Motore. \rightarrow Demonstrate and explain the methods of testing of DC machines and determine losses and efficiency. -> Control the speed of DC Motor and induction motor. -> Explain the starting methode, equivalent circuit and phasos diagname, torque angle, effect of change in excitation and change in load, hunting and damping of synchronous motors

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

NAAC Accredited with B++ Grade

Sample of COs written in Laboratoty Record Book

Experiment No. :	Date :		
Name of the Experiment	Page No.:		
-: COURSE OUTCOMES :-			
At the end of the co	une the Student would be able.		
* Test De machine to del and also its contant its	ermine their characteristics Speed of CC motor		
* ipre-detirmine the por machines by conducting Su	formence characteristics of a		
* perform lond disk on a induction moder to asso	ngle phase and three phase		
* conduct test on load.	induction sonates to pre e charactenistics.		
+ conduct dest on synche performance curves.	monou unates de dance de		

S J M INSTITUTE OF TECHNOLOGY

(Recognized by AICTE, New Delhi and Affiliated to Visvesvaraya Technological University, Belagavi) NH-4 Bypass, P.B.No:73, CHITRADURGA -577502, Karnataka State

NAAC Accredited with B++ Grade

Display of POs & PSOs for all Programmes during the Induction Program 2021-22

