	MECHANICAL ENGINEERING
Course Code	15CED14/15CED24 - COMPUTER AIDED ENGINEERING DRAWING
CO1	Engineering drawing is an important tool for all Engineers and for many others professionals. It is the language of Engineers. Engineering Drawing communicates all needed information from the engineer who designed a part to the workers who will manufacture it.
CO2	The aim of the subject is to equip students with the fundamentals of Computer Aided Engineering Drawing and to further the ability to communicate information by graphical means.
Course Code	15EME14/15EME24 - ELEMENTS OF MECHANICAL ENGINEERING
CO1	Students belonging to all branches of Engineering are made to learn certain fundamental topics related to mechanical engineering so that they will have a minimum understanding of mechanical systems, equipment and process.
Course Code	15ME32 - Material Science
CO1	Describe the mechanical properties of metals, their alloys and various modes of failure.
CO2	Understand the microstructures of ferrous and non-ferrous materials to mechanical properties.
CO3	Explain the processes of heat treatment of various alloys.
<u>CO4</u>	Understand the properties and potentialities of various materials available and material selection procedures.
Comme	Know about composite materials and their processing as well as applications.
Course	15ME33- Basic Thermodynamics
CO1	Explain thermodynamic systems, properties, Zeroth law of thermodynamics, temperature scales and energy interactions.
CO2	Determine heat, work, internal energy, enthalpy for flow & non flow process using First and Second Law of Thermodynamics.
CO3	Interpret behavior of pure substances and its applications to practical problems.
CO4	Determine change in internal energy, change in enthalpy and change in entropy using TD relations for ideal gases.
CO5	Calculate Thermodynamics properties of real gases at all ranges of pressure, temperatures using modified equation of state including Vander Waals equation, Redlich Wong equation and Beattie-Bridgeman equation.
Course Code	15ME34 - Mechanics of Materials
CO1	Understand simple, compound, thermal stresses and strains their relations, Poisson's ratio, Hooke's law, mechanical properties including elastic constants and their relations.
CO2	Determine stresses, strains and deformations in bars with varying circular and rectangular cross-sections subjected to normal and temperature loads.
CO3	Determine plane stress, principal stress, maximum shear stress and their orientations using analytical method and Mohr's circle.
CO4	Determine the dimensions of structural members including beams, bars and rods using Energy methods and also stress distribution in thick and thin cylinders.
CO5	Draw SFD and BMD for different beams including cantilever beams, simply supported beams and overhanging beams subjected to UDL, UVL, Point loads and couples.
CO6	Determine dimensions, bending stress, shear stress and its distribution in beams of circular, rectangular, symmetrical I and T sections subjected to point loads and UDL.
CO7	Determine slopes and deflections at various points on beams subjected to UDL, UVL, Point loads and couples.
CO8	Determine the dimensions of shafts based on torsional strength, rigidity and flexibility and also elastic stability of columns using Rankin's and Euler's theory.

	MECHANICAL ENGINEERING
Course	15ME35B - Machine tools & operations
Code	
COl	Explain the construction & specification of various machine tools.
CO2	Describe various machining processes pertaining to relative motions between tool & work piece
CO3	Discuss different cutting tool materials, tool nomenclature & surface finish
CO4	Apply mechanics of machining process to evaluate machining time
CO5	Analyze tool wear mechanisms and equations to enhance tool life and minimize machining cost.
Course Code	15ME36A / 46A - Computer Aided Machine Drawing
CO1	Sections of pyramids, prisms, cubes, cones and cylinders resting on their bases in 2D.
CO2	Orthographic views of machine parts with and without sectioning in 2D.
CO3	Sectional views for threads with terminologies of ISO Metric, BSW, square and acme, sellers and American standard threads in 2D.
CO4	Hexagonal and square headed bolt and nut with washer, stud bolts with nut and lock nut, flanged nut, slotted nut, taper and split pin for locking counter sunk head screw, grub screw, Allen screw assemblies in 2D.
CO5	Parallel key, Taper key, and Woodruff Key as per the ISO standards in 2D.
CO6	single and double riveted lap joints, butt joints with single/double cover straps, cotter and knuckle joint for two rods in 2D.
CO7	Sketch split muff, protected type flanged, pin type flexible, Oldham's and universal couplings in 2D.
CO8	assemblies from the part drawings with limits ,fits and tolerance given for Plummer block, Ram bottom safety valve, I.C. Engine connecting rod, Screw Jack, Tailstock of lathe, Machine Vice and Lathe square tool post in 2D and 3D.
Course Code	15ME36B/46B - Mechanical Measurements & metrology
CO1	Understand the objectives of metrology, methods of measurement, selection of measuring instruments, standards of measurement and calibration of end bars.
CO2	Describe slip gauges, wringing of slip gauges and building of slip gauges, angle measurement using sine bar, sine center, angle gauges, optical instruments and straightness measurement using Autocollimator.
CO3	Explain tolerance, limits of size, fits, geometric and position tolerances, gauges and their design.
CO4	Understand the principle of Johnson Mikrokator, sigma comparator, dial indicator, LVDT, back pressure gauges, Solex comparators and Zeiss Ultra Optimeter.
CO5	Describe measurement of major diameter, minor diameter, pitch, angle and effective diameter of screw threads by $2 -$ wire, $3 -$ wire methods, screw thread gauges and tool maker's microscope.
CO6	Explain measurement of tooth thickness using constant chord method, addendum comparator methods and base tangent method, composite error using gear roll tester and measurement of pitch, concentricity, run out and involute profile.
CO7	Understand laser interferometers and Coordinate measuring machines.
CO8	Explain measurement systems, transducers, intermediate modifying devices and terminating devices.
CO9	Describe functioning of force, torque, pressure, strain and temperature measuring devices.
Course Code	15MEL37A/47A - Materials testing lab
CO1	Acquire experimentation skills in the field of material testing

CO2 Develop theoretical understanding of the mechanical properties of materials by performing experiments. CO3 Apply the knowledge to analyze a material failure and determine the failure inducing agent/s. CO4 Apply the knowledge of testing methods in related areas. CO5 Know how to improve structure/behavior of materials for various industrial applications Course ISMEL38B - Machine shop CO4 Perform turning , facing , knuring , thread cutting, tapering , eccentric turning and allied operations. CO3 Perform gear tooth cutting using milling machine. CO4 Perform sear tooth cutting using milling machine. CO4 Co4 Co4 CO4 Perform sear tooth cutting tool parameters of single point cutting tool using bench grinder / tool and cutter grinder. CO4 Co4 Co4 CO4 Demostrate precautions and safet portorms followed in Machine Shop. CO7 Exhibit interpersonal skills towards working in a team. CO4 Pariliarize with mechanisms, gears, gear trains and cams. CO3 Apply thermodynamic concepts to analyze the performance of gas power cycles including propulsion systems. CO4 Exhibit interpersonal skills concepts to analyze the performance of gas power cycles including alternate fuels and p		MECHANICAL ENGINEERING
CO3 Apply the knowledge to analyze a material failure and determine the failure inducing agent/s. CO4 Apply the knowledge to testing methods in related areas. CO5 Know how to improve structure/behavior of materials for various industrial applications CO4 Structure/behavior of materials for various industrial applications CO4 Perform turning, facing, knurling, thread cutting, tapering, eccentric turning and allied operations. CO3 Perform gear tooth cutting using milling machine. CO4 Understand the formation of cutting tool parameters of single point cutting tool using bench grinder / tool and cutter grinder. CO5 Understand surface Milling/Slot Milling. CO6 Demonstrate precautions and safety norms followed in Machine Shop. CO7 Exhibit interpersonal skills towards working in a team. CO4 Familiarize with mechanisms and motion analysis of mechanisms CO2 Inderstand methods of mechanism motion analysis and their characteristics CO4 Apply thermodynamic concepts to analyze the performance of gas power cycles including propulsion systems. CO4 Evaluate the performance of steam turbine components Understand ornbustion processes in 1C engines including alternate fuels and pollution effect on environment CO4 Apply thermodynamic concepts to a	CO2	Develop theoretical understanding of the mechanical properties of materials by performing experiments.
C04 Apply the knowledge of testing methods in related areas. C05 Know how to improve structure/behavior of materials for various industrial applications C001 Perform turning , facing , knurling , thread cutting, tapering , cccentric turning and allied operations. C01 Perform keyways / slots , grooves etc using shaper. C03 Perform keyways / slots , grooves etc using shaper. C04 Understand the formation of cutting tool parameters of single point cutting tool using bench grinder / tool and cutter grinder. C05 Understand Self step (Slot Milling). C06 Demonstrate precautions and safety norms followed in Machine Shop. C07 Exhibit interpersonal skills towards working in a team. C08 ISME42 - Kinematics of Machines C09 Environment of enchanisms and motion analysis and their characteristics C01 Understand methods of mechanism motion analysis and their characteristics C03 Analyse motion of planar mechanisms, gears, gear trains and cans. C04 Apply thermodynamic concepts to analyze the performance of gas power cycles including propulsion systems. C03 Evaluate the performance of steam turbine components C04 Apply thermodynamic concepts to analyze turbo machines C05	CO3	Apply the knowledge to analyze a material failure and determine the failure inducing agent/s.
CO3 Know how to improve structure/behavior of materials for various industrial applications Code ISMEL38B - Machine shop CO3 Perform turning , facing , knurling , thread cutting, tapering , eccentric turning and allied operations. CO3 Perform gear tooth cutting using milling machine. CO4 Understand the formation of cutting tool parameters of single point cutting tool using bench grinder / tool and cutter grinder. CO5 Understand full formation of cutting tool parameters of single point cutting tool using bench grinder / tool and cutter grinder. CO6 Demonstrate precautions and safety norms followed in Machine Shop. CO7 Exhibit interpersonal skills towards working in a team. Course ISME42 - Kinematics of Machines CO1 Familiarize with mechanisms and motion analysis of mechanisms Course CO3 Performace of steam turbine components. ISME43 - Applied Thermodynamics CO4 Evaluate the performance of steam turbine components. Course on environmet ISME43 - Applied Thermodynamics CO3 Deprime performace parameters of refrigeration and air-conditioning systems. CO3 Deprime performace of refrigeration and air-conditioning systems. CO4 Understand the principles and applications of refrigeration and air-conditioning	CO4	Apply the knowledge of testing methods in related areas.
Gourse ISMEL38B - Machine shop Code Perform turning , facing , knurling , thread cutting, tapering , eccentric turning and allied operations. CO3 Perform keyways / slors , grooves etc using shaper. CO3 Perform great rooth cutting using multing machine. CO4 Understand the formation of cutting tool parameters of single point cutting tool using bench grinder / tool and cutter grinder. CO5 Understand Surface Milling/Slot Milling. CO6 Demonstrate precautions and safety norms followed in Machine Shop. CO7 Exhibit interpersonal skills towards working in a team. CO8 Pamiliarize with mechanisms and motion analysis of mechanisms CO1 Familiarize with mechanisms gens, gear trains and cams. CO3 Analyse motion of planar mechanism, gens, gear trains and cams. CO4 Apply thermodynamic concepts to analyze the performance of gas power cycles including propulsion systems. CO3 Evaluate the performance of steam turbine components CO4 Apply thermodynamic concepts to analyze turb omachines CO5 Understand Combustion of fuels and combustion processes in Cluding alternate fuels and pollution effigeration systems. CO4 Apply thermodynamic concepts to analyze turb omachines CO5	CO5	Know how to improve structure/behavior of materials for various industrial applications
COI Perform turning , facing , knurling , thread cutting, tapering , eccentric turning and allied operations. CO2 Perform gear took cutting using shaper. CO3 Perform gear took cutting using milling machine. CO4 Understand the formation of cutting tool parameters of single point cutting tool using bench grinder / tool and cutter grinder. CO5 Understand Surface Milling/Slot Milling. CO6 Demonstrate precautions and safety norms followed in Machine Shop. CO7 Exhibit interpersonal skills towards working in a team. CO0 Understand methods of mechanisms of mechanisms CO2 Understand methods of mechanism motion analysis and their characteristics CO3 Analyse motion of planar mechanisms, gears, gear trains and cams. CO4 Exhibit are consets to analyze the performance of gas power cycles including propulsion systems. CO2 Exhibit are the performance of seas necesses in I C engines including alternate fuels and pollution effec on environment CO3 Determine performance or seam urbrine components. CO4 Apply thermodynamic concepts to analyze turbo machines. CO5 Determine performance or seam urbrine or forfigeration systems. CO4 Apply thermodynamic concepts to analyze turbo machines.	Course Code	15MEL38B - Machine shop
C02 Perform keyways / slots, grooves etc using shaper. C03 Perform gear tooth cutting using milling machine. C04 Understand the formation of cutting tool parameters of single point cutting tool using bench grinder / tool and cutter grinder. C05 Understand the formation of cutting tool parameters of single point cutting tool using bench grinder / tool and cutter grinder. C06 Demonstrate precautions and safety norms followed in Machine Shop. C07 Exhibit interpersonal skills towards working in a team. C08 Inderstand the formation of planar mechanisms and motion analysis of mechanisms C01 Familiarize with mechanisms and motion analysis and their characteristics C03 Analyse motion of planar mechanisms, gears, gear trains and cams. C01 Apply thermodynamic concepts to analyze the performance of gas power cycles including propulsion systems. C02 Evaluate the performance of steam turbine components Understand the ornivonment C03 Apply thermodynamic concepts to analyze turbo machines C04 C04 Evaluate the performance opt steam anyze turbo machines C05 C03 Analyze air conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning systems. C06 C04 Inderstand the working, applications, rele	CO1	Perform turning, facing, knurling, thread cutting, tapering, eccentric turning and allied operations.
CO3 Perform gear tooth cutting using milling machine. CO4 Understand the formation of cuting tool parameters of single point cutting tool using bench grinder / tool and cutter grinder. CO5 Understand Surface Milling/Slot Milling. CO6 Demonstrate precautions and safety norms followed in Machine Shop. CO7 Exhibit interpersonal skills towards working in a team. Course 15ME42 - Kinematics of Machines CO1 Familiarize with mechanisms and motion analysis of mechanisms CO2 Understand methods of mechanism, gears, gear trains and cans. CO3 Analyse motion of planar mechanisms, gears, gear trains and cans. CO4 Exhibit interpersonal skills towards want analysis and their characteristics CO3 Analyse motion of planar mechanisms, gears, gear trains and cans. CO4 Evaluate the performance of steam turbine components CO3 Understand combustion of rules and combustion processes in 1 C engines including alternate fuels and pollution effec on environment CO4 Apply thermodynamic concepts to analyze turbo machines CO5 Determine performance parameters of refrigeration systems. CO6 Understand the viriciples and applications of refrigeration systems. CO6 Understand the working, applications, relevance of air and identify m	CO2	Perform keyways / slots . grooves etc using shaper.
CO4 CO4 CO4 CO4 Cutter grinder. Understand the formation of cutting tool parameters of single point cutting tool using bench grinder / tool and cutter grinder. CO5 CO5 CO5 Demonstrate precautions and safety norms followed in Machine Shop. CO6 CO7 Exhibit interpersonal skills towards working in a team. CO07 CO7 Exhibit interpersonal skills towards working in a team. CO07 Exhibit interpersonal skills towards working in a team. CO02 CO10 Conterset Interestant emchods of mechanisms motion analysis of mechanisms CO20 CO10 CO10 Conterstant emchods of mechanisms gears, gear trains and cams. CO010 CO02 Evaluate the performance of steam turbine components CO3 CO3 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4	CO3	Perform gear tooth cutting using milling machine.
Cots Understand Surface Milling/Slot Milling. CO5 Understand Surface Milling/Slot Milling. CO6 Demonstrate precautions and safety norms followed in Machine Shop. CO7 Exhibit interpersonal skills towards working in a team. Course ISME42 - Kinematics of Machines CO2 Understand methods of mechanism motion analysis and their characteristics CO3 Analyse motion of planar mechanisms, gears, gear trains and cams. Course ISME43 - Applied Thermodynamics Code 15ME43 - Applied Thermodynamics Code Code Col Apply thermodynamic concepts to analyze the performance of gas power cycles including alternate fuels and pollution effec on environment CO3 Understand combustion of fuels and combustion processes in I C engines including alternate fuels and pollution effec on environment CO4 Determine performance parameters of refrigeration and air-conditioning systems. CO4 Understand the principles and applications of refrigeration systems. CO6 Understand the principles of pressure, buoyancy and floation CO8 Understand the working, applications, relevance of air and identify methods for performance improvement. CO7 Identify and calculate the key fluid properties used in the analysis of fluid behavior. <t< td=""><th>CO4</th><td>Understand the formation of cutting tool parameters of single point cutting tool using bench grinder / tool and</td></t<>	CO4	Understand the formation of cutting tool parameters of single point cutting tool using bench grinder / tool and
CO5 Demonstrate precautions and safety norms followed in Machine Shop. CO7 Exhibit interpersonal skills towards working in a team. Course ISME42 - Kinematics of Machines CO1 Familiarize with mechanisms and motion analysis of mechanisms CO2 Understand methods of mechanism notion analysis and their characteristics CO3 Analyse motion of planar mechanisms, gears, gear trains and cams. Course ISME43 - Applied Thermodynamics CO4 Apply thermodynamic concepts to analyze the performance of gas power cycles including propulsion systems. CO2 Evaluate the performance of steam turbine components Understand combustion of fuels and combustion processes in I C engines including alternate fuels and pollution effecon environment CO4 Apply thermodynamic concepts to analyze turbo machines CO5 Determine performance parameters of refrigeration and air-conditioning systems. CO6 Understand the principles and applications of refrigeration systems. CO7 Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system CO8 Understand the working, applications, relevance of air and identify methods for performance improvement. CO1 Identify and calculate the key fluid properties used in the analysis of fluid behavio	COS	Understand Surface Milling/Slot Milling
COD Definition of planar both of the problem of the prob	CO5	Onderstand surface winning and offer a norme followed in Machine Shop
CO/ Exhibit metpersonal skins towards working in a team. Course Code ISME42 - Kinematics of Machines CO2 Familiarize with mechanisms and motion analysis and their characteristics CO3 Analyse motion of planar mechanisms, gears, gear trains and cams. Course Code ISME43 - Applied Thermodynamics CO3 Analyse motion of planar mechanisms, gears, gear trains and cams. Course Code ISME43 - Applied Thermodynamics CO4 Apply thermodynamic concepts to analyze the performance of gas power cycles including propulsion systems. CO2 Evaluate the performance of steam turbine components Onderstand the performance parameters of refrigeration and air-conditioning systems. CO4 Apply thermodynamic concepts to analyze turbo machines O CO5 Determine performance parameters of refrigeration systems. CO6 CO6 Understand the principles and applications of refrigeration systems. CO7 CO3 Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system CO3 Understand the working, applications, relevance of air and identify methods for performance improvement. CO4 Understand and apply the principles of pressure, buoyancy and floatation </td <th>C00</th> <td>Exhibit interpersonal skills towards working in a team</td>	C00	Exhibit interpersonal skills towards working in a team
Code 15ME42 - Kinematics of Machines CO1 Familiarize with mechanisms and motion analysis and their characteristics CO2 Understand methods of mechanism motion analysis and their characteristics CO3 Analyse motion of planar mechanisms, gears, gear trains and cams. Course ISME43 - Applied Thermodynamics CO2 Evaluate the performance of steam turbine components CO3 Understand combustion of fuels and combustion processes in I C engines including alternate fuels and pollution effec on environment CO4 Apply thermodynamic concepts to analyze turbo machines CO5 Determine performance parameters of refrigeration and air-conditioning systems. CO6 Understand the principles and applications of refrigeration systems. CO6 Understand the principles and applications, relevance of air and identify methods for performance improvement. CO7 air-conditioning system CO8 Understand and apply the principles of pressure, buoyancy and floatation CO4 Apply the knowledge of fluid statics, kinematics and dynamics. CO2 Understand and apply the principles of fluid kinematics and dynamics. CO3 Identify and calculate the key fluid properties used in the analysis of fluid behavior. CO2	Course	
C01 Familiarize with mechanism and motion analysis of mechanisms C02 Understand methods of mechanism notion analysis and their characteristics C03 Analyse motion of planar mechanisms, gears, gear trains and cams. Course ISME43 - Applied Thermodynamics C04 Apply thermodynamic concepts to analyze the performance of gas power cycles including propulsion systems. C02 Evaluate the performance of steam turbine components C03 Apply thermodynamic concepts to analyze turbo machines C04 Apply thermodynamic concepts to analyze turbo machines C05 Determine performance parameters of refrigeration and air-conditioning systems. C06 Understand the principles and applications of refrigeration systems. C07 air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system C08 understand the working, applications, relevance of air and identify methods for performance improvement. C09 Understand and apply the principles of pressure, buoyancy and floatation C03 Apply the knowledge of fluid statics, kinematics and dynamics. C04 Understand and apply the principles of fluid kinematics and dynamics. C05 Understand and apply the principles of fluid kinematics and dynamics. <td< th=""><th>Code</th><th>15ME42 - Kinematics of Machines</th></td<>	Code	15ME42 - Kinematics of Machines
CO2 Understand methods of mechanism motion analysis and their characteristics CO3 Analyse motion of planar mechanisms, gears, gear trains and cams. Course 15ME43 - Applied Thermodynamics CO4 Apply thermodynamic concepts to analyze the performance of gas power cycles including propulsion systems. CO3 Evaluate the performance of steam turbine components Understand combustion of fuels and combustion processes in I C engines including alternate fuels and pollution effection environment CO4 Apply thermodynamic concepts to analyze turbo machines CO5 Determine performance parameters of refrigeration and air-conditioning systems. CO6 Understand the principles and applications of refrigeration systems. CO7 Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system CO8 Understand the working, applications, relevance of air and identify methods for performance improvement. CO1 Identify and calculate the key fluid properties used in the analysis of fluid behavior. CO2 Understand and apply the principles of pressure, buoyancy and floatation CO3 Apply the knowledge of fluid statics, kinematics and dynamics. CO4 Understand and apply the principles of fluid kinematics. CO4 Understand and apply t	CO1	Familiarize with mechanisms and motion analysis of mechanisms
CO3 Analyse motion of planar mechanisms, gears, gear trains and cams. Course 15ME43 - Applied Thermodynamics CO1 Apply thermodynamic concepts to analyze the performance of gas power cycles including propulsion systems. CO2 Evaluate the performance of steam turbine components CO3 Understand combustion of fuels and combustion processes in I C engines including alternate fuels and pollution effection environment CO4 Apply thermodynamic concepts to analyze turbo machines CO5 Determine performance parameters of refrigeration and air-conditioning systems. CO6 Understand the principles and applications of refrigeration systems. CO7 Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system CO8 Understand the working, applications, relevance of air and identify methods for performance improvement. CO4 Understand and apply the principles of pressure, buoyancy and floatation CO3 Understand and apply the principles of pressure, buoyancy and floatation CO4 Understand and apply the principles of fluid kinematics and dynamics. CO4 Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO5 Understand the concept of boundary layer in	CO2	Understand methods of mechanism motion analysis and their characteristics
Course Code 15ME43 - Applied Thermodynamics CO1 Apply thermodynamic concepts to analyze the performance of gas power cycles including propulsion systems. CO2 Evaluate the performance of steam turbine components CO3 Understand combustion of fuels and combustion processes in I C engines including alternate fuels and pollution effection environment CO4 Apply thermodynamic concepts to analyze turbo machines CO5 Determine performance parameters of refrigeration and air-conditioning systems. CO6 Understand the principles and applications of refrigeration systems. CO7 Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system CO8 Understand the working, applications, relevance of air and identify methods for performance improvement. CO2 Understand and apply the principles of pressure, buoyancy and floatation CO3 Apply the knowledge of fluid statics, kinematics and dynamics. CO4 Understand and apply the principles of fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO4 Understand and apply the principles of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds. CO5 Understand the coactept of compressible flow and CFD	CO3	Analyse motion of planar mechanisms, gears, gear trains and cams.
Code District of the preformance of gas power cycles including propulsion systems. CO2 Evaluate the performance of steam turbine components Understand combustion of fuels and combustion processes in 1 C engines including alternate fuels and pollution effection environment CO4 Apply thermodynamic concepts to analyze turbo machines CO5 Determine performance parameters of refrigeration and air-conditioning systems. CO6 Understand the principles and applications of refrigeration systems. CO7 Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system CO8 Understand the working, applications, relevance of air and identify methods for performance improvement. Course ISME44 - Fluid Mechanics CO4 Understand and apply the principles of pressure, buoyancy and floatation CO3 Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineering CO4 Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO4 Understand and apply the principles of fluid kinematics and dynamics. CO4 Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers i	Course	15MF43 - Applied Thermodynamics
CO1 Apply thermodynamic concepts to analyze the performance of gas power cycles including propulsion systems. CO2 Evaluate the performance of steam turbine components Understand combustion of fuels and combustion processes in I C engines including alternate fuels and pollution effec on environment CO4 Apply thermodynamic concepts to analyze turbo machines CO5 Determine performance parameters of refrigeration and air-conditioning systems. CO6 Understand the principles and applications of refrigeration systems. CO7 Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system CO8 Understand the working, applications, relevance of air and identify methods for performance improvement. CO1 Identify and calculate the key fluid properties used in the analysis of fluid behavior. CO2 Understand and apply the principles of pressure, buoyancy and floatation CO3 Apply the knowledge of fluid statics, kinematics and dynamics. CO4 Understand and apply the principles of fluid kinematics and dynamics. CO5 Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO5 Understand the basic concept of compressible flow and CFD Courese 15ME45A - Metal casting	Code	
CO2 Evaluate the performance of steam turbine components CO3 Understand combustion of fuels and combustion processes in I C engines including alternate fuels and pollution effec on environment CO4 Apply thermodynamic concepts to analyze turbo machines CO5 Determine performance parameters of refrigeration and air-conditioning systems. CO6 Understand the principles and applications of refrigeration systems. CO7 Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system CO8 Understand the working, applications, relevance of air and identify methods for performance improvement. Course 15ME44 - Fluid Mechanics CO1 Identify and calculate the key fluid properties used in the analysis of fluid behavior. CO2 Understand and apply the principles of pressure, buoyancy and floatation CO3 Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineering CO4 Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO6 Understand the basic concept of compressible flow and CFD Course 15ME45A - Metal casting and welding CO4 Describe the casting process, preparation of Green	CO1	Apply thermodynamic concepts to analyze the performance of gas power cycles including propulsion systems.
CO3 Understand combustion of fuels and combustion processes in IC engines including alternate fuels and pollution effec on environment CO4 Apply thermodynamic concepts to analyze turbo machines CO5 Determine performance parameters of refrigeration and air-conditioning systems. CO6 Understand the principles and applications of refrigeration systems. CO7 Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system CO8 Understand the working, applications, relevance of air and identify methods for performance improvement. Course 15ME44 - Fluid Mechanics CO1 Identify and calculate the key fluid properties used in the analysis of fluid behavior. CO2 Understand and apply the principles of pressure, buoyancy and floatation CO3 Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineering CO4 Understand and apply the principles of fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO6 Understand the basic concept of compressible flow and CFD Course 15ME45A - Metal casting and welding CO4 Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds. CO2 <th>CO2</th> <td>Evaluate the performance of steam turbine components</td>	CO2	Evaluate the performance of steam turbine components
C04 Apply thermodynamic concepts to analyze turbo machines C05 Determine performance parameters of refrigeration and air-conditioning systems. C06 Understand the principles and applications of refrigeration systems. C07 Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system C08 Understand the working, applications, relevance of air and identify methods for performance improvement. Course 15ME44 - Fluid Mechanics C04 Identify and calculate the key fluid properties used in the analysis of fluid behavior. C02 Understand and apply the principles of pressure, buoyancy and floatation C03 Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineering C04 Understand and apply the principles of fluid kinematics and dynamics. C05 Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. C06 Understand the basic concept of compressible flow and CFD Course 15ME45A - Metal casting and welding C06 Understand the basic concept of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds. C06 Compare the Gas fired pit, Resistance, Coreless, Electrical a	CO3	Understand combustion of fuels and combustion processes in I C engines including alternate fuels and pollution effect
CO4 Apply thermodynamic concepts to analyze turbo machines CO5 Determine performance parameters of refrigeration and air-conditioning systems. CO6 Understand the principles and applications of refrigeration systems. CO7 Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system CO8 Understand the working, applications, relevance of air and identify methods for performance improvement. Course 15ME44 - Fluid Mechanics CO1 Identify and calculate the key fluid properties used in the analysis of fluid behavior. CO2 Understand and apply the principles of pressure, buoyancy and floatation CO3 Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineering CO4 Understand and apply the principles of fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO6 Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO6 Understand the basic concept of compressible flow and CFD Course 15ME45A - Metal casting and welding CO4 Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds. <	~~ · · ·	on environment
CO5 Determine performance parameters of refrigeration and air-conditioning systems. CO6 Understand the principles and applications of refrigeration systems. CO7 Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system CO8 Understand the working, applications, relevance of air and identify methods for performance improvement. Course 15ME44 - Fluid Mechanics CO1 Identify and calculate the key fluid properties used in the analysis of fluid behavior. CO2 Understand and apply the principles of pressure, buoyancy and floatation CO3 Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineering CO4 Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO6 Understand the basic concept of compressible flow and CFD Course 15ME45A - Metal casting and welding CO4 Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds. CO6 Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines. CO3 Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal F	CO4	Apply thermodynamic concepts to analyze turbo machines
CO6 Understand the principles and applications of refrigeration systems. CO7 Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system CO8 Understand the working, applications, relevance of air and identify methods for performance improvement. Course 15ME44 - Fluid Mechanics CO1 Identify and calculate the key fluid properties used in the analysis of fluid behavior. CO2 Understand and apply the principles of pressure, buoyancy and floatation CO3 Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineering CO4 Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO6 Understand the basic concept of compressible flow and CFD Course 15ME45A - Metal casting and welding CO1 Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds. CO2 Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines. CO3 Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces.	CO5	Determine performance parameters of refrigeration and air-conditioning systems.
CO7 Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system CO8 Understand the working, applications, relevance of air and identify methods for performance improvement. Course 15ME44 - Fluid Mechanics CO01 Identify and calculate the key fluid properties used in the analysis of fluid behavior. CO2 Understand and apply the principles of pressure, buoyancy and floatation CO3 Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineering CO4 Understand and apply the principles of fluid kinematics and dynamics. CO5 Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO6 Understand the basic concept of compressible flow and CFD Course 15ME45A - Metal casting and welding CO4 Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds. CO2 Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines. CO3 Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces. CO4 Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings. <th>CO6</th> <td>Understand the principles and applications of refrigeration systems.</td>	CO6	Understand the principles and applications of refrigeration systems.
CO8Understand the working, applications, relevance of air and identify methods for performance improvement.Course CodeISME44 - Fluid MechanicsC01Identify and calculate the key fluid properties used in the analysis of fluid behavior.C02Understand and apply the principles of pressure, buoyancy and floatationC03Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineeringC04Understand and apply the principles of fluid kinematics and dynamics.C05Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables.C06Understand the basic concept of compressible flow and CFDC07Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds.C03Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines.C04Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces.C04Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.	CO7	Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system
Course CodeIsmE44 - Fluid MechanicsCO1Identify and calculate the key fluid properties used in the analysis of fluid behavior.CO2Understand and apply the principles of pressure, buoyancy and floatationCO3Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineeringCO4Understand and apply the principles of fluid kinematics and dynamics.CO5Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables.CO6Understand the basic concept of compressible flow and CFDCourse CodeDescribe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds.CO2Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines.CO3Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces.CO4Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.	CO8	Understand the working, applications, relevance of air and identify methods for performance improvement.
CO1 Identify and calculate the key fluid properties used in the analysis of fluid behavior. CO2 Understand and apply the principles of pressure, buoyancy and floatation CO3 Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineering CO4 Understand and apply the principles of fluid kinematics and dynamics. CO5 Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO6 Understand the basic concept of compressible flow and CFD Course Code CO1 Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds. CO2 Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines. CO3 Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces. CO4 Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.	Course Code	15ME44 - Fluid Mechanics
CO2 Understand and apply the principles of pressure, buoyancy and floatation CO3 Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineering CO4 Understand and apply the principles of fluid kinematics and dynamics. CO5 Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO6 Understand the basic concept of compressible flow and CFD Course 15ME45A - Metal casting and welding CO1 Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds. CO2 Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines. CO3 Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces. CO4 Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.	CO1	Identify and calculate the key fluid properties used in the analysis of fluid behavior.
CO3 Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineering CO4 Understand and apply the principles of fluid kinematics and dynamics. CO5 Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO6 Understand the basic concept of compressible flow and CFD Course 15ME45A - Metal casting and welding CO1 Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds. CO2 Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines. CO3 Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces. CO4 Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.	CO2	Understand and apply the principles of pressure, buoyancy and floatation
CO4 Understand and apply the principles of fluid kinematics and dynamics. CO5 Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO6 Understand the basic concept of compressible flow and CFD Course Code 15ME45A - Metal casting and welding CO1 Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds. CO2 Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines. CO3 Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces. CO4 Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.	CO3	Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineering
CO1 Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables. CO6 Understand the basic concept of compressible flow and CFD Course 15ME45A - Metal casting and welding CO1 Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds. CO2 Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines. CO3 Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces. CO4 Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.	CO4	Understand and apply the principles of fluid kinematics and dynamics.
COS numbers in terms of input output variables. CO6 Understand the basic concept of compressible flow and CFD Course 15ME45A - Metal casting and welding CO1 Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds. CO2 Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines. CO3 Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces. CO4 Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.	005	Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless
CO6 Understand the basic concept of compressible flow and CFD Course Code 15ME45A - Metal casting and welding CO1 Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds. CO2 Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines. CO3 Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces. CO4 Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.	005	numbers in terms of input output variables.
Course Code15ME45A - Metal casting and weldingCO1Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds.CO2Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines.CO3Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces.CO4Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.	CO6	Understand the basic concept of compressible flow and CFD
CO1 Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds. CO2 Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines. CO3 Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces. CO4 Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.	Course Code	15ME45A - Metal casting and welding
CO2Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines.CO3Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces.CO4Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.	CO1	Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds.
CO3Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces.CO4Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.	CO2	Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines.
CO4 Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.	CO3	Compare the Gas fired pit. Resistance. Coreless. Electrical and Cupola Metal Furnaces.
*	000	······································

	MECHANICAL ENGINEERING
CO5	Explain the Solidification process and Casting of Non-Ferrous Metals.
CO6	Describe the Metal Arc, TIG, MIG, Submerged and Atomic Hydrogen Welding processes used in manufacturing.
CO7	Explain the Resistance spot, Seam, Butt, Projection, Friction, Explosive, Thermit, Laser and Electron Beam Special
	type of welding process used in manufacturing. U PO1
CO8	Describe the Metallurgical aspects in Welding and inspectionmethods for the quality assurance of components made
	of casting andjoining process. U PO1
Course	15MEL47A / MEL47B - Mechanical Measurement & Metrology Laboratory
Code	
COI	To calibrate pressure gauge, thermocouple, LVDT, load cell, micrometer.
CO2	To measure angle using Sine Center/ Sine Bar/ Bevel Protractor, alignment using Autocollimator/ Roller set.
CO3	To demonstrate measurements using Optical Projector/Tool maker microscope, Optical flats.
CO4	To measure cutting tool forces using Lathe/Drill tool dynamometer.
CO5	To measure Screw thread parameters using 2-Wire or 3-Wire method, gear tooth profile using gear tooth vernier/Gear
000	
Course	10 measure surface roughness using 1 any Surf/ Mechanical Comparator.
Course	15MEL 484 / MEL 48D Foundary & Foreing
COL	Demonstrate verious skills of sand propagation molding
CO1	Demonstrate various skills of forging operations
CO2	Work as a team keeping up athical principles
Course	
Code	15ME51 - Management and Engineering Economics
Cout	
01	Understand needs, functions, roles, scope and evolution of Management
CO2	Understand importance, purpose of Planning and hierarchy of planning and also analyze its types
CO3	Discuss Decision making, Organizing, Staffing, Directing and Controlling
CO4	Select the best economic model from various available alternatives
CO5	Understand various interest rate methods and implement the suitable one.
CO6	Estimate various depreciation values of commodities
0	Prepare the project reports effectively.
Course	15ME52 - Dynamics of Machinery
Couc	Determine the forces and couples for static and dynamic conditions of four bar and slider crank mechanisms to
CO1	keep the system in equilibrium.
~ ~ ~	Determine magnitude and angular position of balancing masses under static and dynamic condition of rotating
CO2	masses in same and different planes.
CO3	Determine unbalanced primary, secondary forces and couples in single and multi-cylinder engine.
CO4	Determine sensitiveness, isochronism, effort and power of porter and hartnell governors
CO5	Determine gyroscopic couple and effects related to 2, 4 wheeler, plane disc, ship and aeroplanes.
000	
000	Understand types of vibration, SHM and methods of finding natural frequencies of simple mechanical systems.
C07	Determine equation of motion, natural frequency, damping factor, logarithmic decrement of damped free
07	vibration (SDOF) systems
CO8	Determine the natural frequency, force and motion transmissibility of single degree freedom systems.
C00	Determine equation of motion of rotating and reciprocating unbalance systems, magnification factor, and
0.09	transmissibility of forced vibration (SDOF) systems.
Course	15ME53 - Turbo Machines
Code	
CO1	Able to give precise definition of turbomachinery
CO2	Identify various types of turbo machinery

	MECHANICAL ENGINEERING
CO3	Apply the Euler's equation for turbomachinery to analyse energy transfer in turbomachines
CO4	Understand the principle of operation of pumps, fans, compressors and turbines.
CO5	Perform the preliminary design of turbomachines (pumps, rotary compressors and turbines)
CO6	Analyze the performance of turbo machinery.
Course	1001E54 Design of Markins Elements 1
Code	15ME54 - Design of Machine Elements - 1
CO1	Describe the design process, choose materials.
CO2	Apply the codes and standards in design process.
CO3	Analyze the behavior of machine components under static, impact, fatigue loading using failure theories.
CO4	Design shafts, joints, couplings
CO5	Design of riveted and welded joints
CO6	Design of threaded fasteners and power screws
Course	15MF553 - Human Resource Management
Code	
CO1	
001	Understand the importance, functions and principles Human Resource Management and process of Job analysis
CO2	Summarize the objectives of Human Resource planning, Recruitment and selection process
CO3	Understand the process involved in Placement, Training and development activities
CO4	Understand the characteristics of an effective appraisal system and compensation planning.
CO5	Understand the issues related to employee welfare, grievances and discipline.
Course	15ME562 Automotion & Dobotion
Code	I JMES05 - Automation & Robotics
CO1	Classify various types of automation & manufacturing systems
CON	Discuss different robot configurations, motions, drive systems and its performance
002	parameters.
CO3	Describe the basic concepts of control systems, feedback components, actuators and
003	power transmission systems used in robots.
CO4	Explain the working of transducers, sensors and machine vision systems.
CO5	Discuss the future capabilities of sensors, mobility systems and Artificial Intelligence
0.05	in the field of robotics.
Course	15MEL 57 - Fluid Mechanics & Machinery Lab
Code	
CO1	Perform experiments to determine the coefficient of discharge of flow measuring devices
CO2	Conduct experiments on hydraulic turbines and pumps to draw characteristics
CO3	Test basic performance parameters of hydraulic turbines and pumps and execute the knowledge in real life
	situations
CO4	Determine the energy flow pattern through the hydraulic turbines and pumps
CO5	Exhibit his competency towards preventive maintenance of hydraulic machines
Course	15MEL58 - Energy Lab
Code	
CO1	Perform experiments to determine the properties of fuels and oils
CO2	Conduct experiments on engines and draw characteristics.
CO3	Test basic performance parameters of I.C. Engine and implement the knowledge in industry.
CO4	Identify exhaust emission, factors affecting them and report the remedies.
CO5	Determine the energy flow pattern through the I C Engine
CO6	Exhibit his competency towards preventive maintenance of IC engines
Course	15ME61-Finite Element Method
Code	
COI	Understand the concepts behind formulation methods in FEM.

	MECHANICAL ENGINEERING
CO^2	
	Identify the application and characteristics of FEA elements such as bars, beams, plane and iso-parametric elements.
CO3	Develop element characteristic equation and generation of global equation.
CO4	Able to apply suitable boundary conditions to a global equation for bars, trusses, beams,
	circular shafts, heat transfer, fluid flow, axi symmetric and dynamic problems and solve them displacements, stress
C	and strains induced.
Code	15ME62-Computer Integrated Manufacturing
Cout	Able to define Automation, CIM, CAD, CAM and explain the differences between these concepts.
COI	Solve simple problems of transformations of entities on computer screen.
000	Explain the basics of automated manufacturing industries through mathematical models and analyze different
CO2	types of automated flow lines.
CO3	Analyze the automated flow lines to reduce down time and enhance productivity.
CO4	Explain the use of different computer applications in manufacturing, and able to prepare part programs for
C04	simple jobs on CNC machine tools and robot programming.
CO5	Visualize and appreciate the modern trends in Manufacturing like additive manufacturing, Industry 4.0 and
0.05	applications of Internet of Things leading to Smart Manufacturing
Course	15ME63-Heat Transfer
Code	
COI	Compute temperature distribution in steady-state and unsteady-state heat conduction
CO2	Understand and interpret heat transfer through extended surfaces.
03	Interpret and compute forced and free convective heat transfer.
CO4	Explain the principles of radiation heat transfer and understand the numerical formula for heat conduction
CO5	problems. Design heat exchangers using LMTD and NTU methods
CO5	Design heat exchangers using LMTD and NTU methods.
CO5 Course Code	Design heat exchangers using LMTD and NTU methods. 15ME64-Design of Machine Elements-II
CO5 Course Code CO1	Design heat exchangers using LMTD and NTU methods. 15ME64-Design of Machine Elements-II Apply engineering design tools to product design.
CO5 Course Code CO1 CO2	Design heat exchangers using LMTD and NTU methods. 15ME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys.
CO5 Course Code CO1 CO2 CO3	Design heat exchangers using LMTD and NTU methods. 15ME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications.
CO5 Course Code CO1 CO2 CO3 CO4	Design heat exchangers using LMTD and NTU methods. 15ME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications. Design brakes and clutches.
CO5 Course Code CO1 CO2 CO3 CO4 CO5	Design heat exchangers using LMTD and NTU methods.
CO5 Course Code CO1 CO2 CO3 CO4 CO5 CO6	Design heat exchangers using LMTD and NTU methods.
CO5 Course Code CO1 CO2 CO3 CO4 CO5 CO6 CO7	Design heat exchangers using LMTD and NTU methods. I5ME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications. Design brakes and clutches. Design hydrodynamic bearings for different applications. Select Anti friction bearings for different applications using the manufacturers, catalogue. Develop proficiency to generate production drawings using CAD software.
CO5 Course Code CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8	Design heat exchangers using LMTD and NTU methods. I5ME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications. Design brakes and clutches. Design hydrodynamic bearings for different applications. Select Anti friction bearings for different applications using the manufacturers, catalogue. Develop proficiency to generate production drawings using CAD software. Become good design engineers through learning the art of working in a team
CO5 Course Code CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO8 Course	problems. Design heat exchangers using LMTD and NTU methods. 15ME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications. Design brakes and clutches. Design hydrodynamic bearings for different applications. Select Anti friction bearings for different applications using the manufacturers, catalogue. Develop proficiency to generate production drawings using CAD software. Become good design engineers through learning the art of working in a team 15ME653-Metal Forming
CO5 Course Code CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO7 CO8 Course Code	Design heat exchangers using LMTD and NTU methods. I5ME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications. Design brakes and clutches. Design hydrodynamic bearings for different applications. Select Anti friction bearings for different applications using the manufacturers, catalogue. Develop proficiency to generate production drawings using CAD software. Become good design engineers through learning the art of working in a team I5ME653-Metal Forming
CO5 Course Code CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO7 CO8 Course Code Code	Design heat exchangers using LMTD and NTU methods. ISME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications. Design brakes and clutches. Design hydrodynamic bearings for different applications. Select Anti friction bearings for different applications using the manufacturers, catalogue. Develop proficiency to generate production drawings using CAD software. Become good design engineers through learning the art of working in a team ISME653-Metal Forming Able to understand the concept of different metal forming process.
CO5 Course CO4 CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 Course Code CO1 CO1 CO2	problems. Design heat exchangers using LMTD and NTU methods. 15ME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications. Design brakes and clutches. Design hydrodynamic bearings for different applications. Select Anti friction bearings for different applications using the manufacturers, catalogue. Develop proficiency to generate production drawings using CAD software. Become good design engineers through learning the art of working in a team 15ME653-Metal Forming Able to understand the concept of different metal forming process. Able to approach metal forming processes both analytically and numerically
CO5 Course CO4 CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO07 CO8 CO07 CO8 Course Code CO1 CO2 CO2 CO3	Design heat exchangers using LMTD and NTU methods. ISME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications. Design brakes and clutches. Design hydrodynamic bearings for different applications. Select Anti friction bearings for different applications using the manufacturers, catalogue. Develop proficiency to generate production drawings using CAD software. Become good design engineers through learning the art of working in a team ISME653-Metal Forming Able to understand the concept of different metal forming process. Able to approach metal forming processes both analytically and numerically Able to design metal forming processes
CO5 Course Code CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 Course Course Code CO1 CO2 CO3 CO3	Design heat exchangers using LMTD and NTU methods. I5ME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications. Design brakes and clutches. Design hydrodynamic bearings for different applications. Select Anti friction bearings for different applications using the manufacturers, catalogue. Develop proficiency to generate production drawings using CAD software. Become good design engineers through learning the art of working in a team I5ME653-Metal Forming Able to understand the concept of different metal forming processs. Able to design metal forming processes Able to develop approaches and solutions to analyze metal forming processes and the associated problems and
CO5 Course Code CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 Course Code CO1 CO2 CO3 CO3 CO4	Design heat exchangers using LMTD and NTU methods. ISME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications. Design brakes and clutches. Design hydrodynamic bearings for different applications. Select Anti friction bearings for different applications using the manufacturers, catalogue. Develop proficiency to generate production drawings using CAD software. Become good design engineers through learning the art of working in a team ISME653-Metal Forming Able to understand the concept of different metal forming process. Able to approach metal forming processes Able to develop approaches and solutions to analyze metal forming processes and the associated problems and flaws
CO5 Course Code CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 Course Code CO1 CO2 CO3 CO3 CO4	Design heat exchangers using LMTD and NTU methods. I5ME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications. Design brakes and clutches. Design hydrodynamic bearings for different applications. Select Anti friction bearings for different applications using the manufacturers, catalogue. Develop proficiency to generate production drawings using CAD software. Become good design engineers through learning the art of working in a team I5ME653-Metal Forming Able to understand the concept of different metal forming process. Able to approach metal forming processes both analytically and numerically Able to design metal forming processes Able to develop approaches and solutions to analyze metal forming processes and the associated problems and flaws I5ME664-Total Quality Management
CO5 Course Code CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 Course Code CO1 CO2 CO3 CO3 CO4 CO4 CO4	Design heat exchangers using LMTD and NTU methods. 15ME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications. Design brakes and clutches. Design hydrodynamic bearings for different applications using the manufacturers, catalogue. Develop proficiency to generate production drawings using CAD software. Become good design engineers through learning the art of working in a team 15ME653-Metal Forming Able to understand the concept of different metal forming process. Able to approach metal forming processes both analytically and numerically Able to design metal forming processes Able to develop approaches and solutions to analyze metal forming processes and the associated problems and flaws 15ME664-Total Quality Management Explain the various approaches of TOM
CO5 Course Code CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 Course Code CO1 CO2 CO3 CO4 CO4 CO4 CO4 CO4 CO4 CO4	Design heat exchangers using LMTD and NTU methods. I5ME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications. Design brakes and clutches. Design hydrodynamic bearings for different applications. Select Anti friction bearings for different applications using the manufacturers, catalogue. Develop proficiency to generate production drawings using CAD software. Become good design engineers through learning the art of working in a team I5ME653-Metal Forming Able to understand the concept of different metal forming process. Able to approach metal forming processes both analytically and numerically Able to design metal forming processes Able to develop approaches and solutions to analyze metal forming processes and the associated problems and flaws I5ME664-Total Quality Management Explain the various approaches of TQM Infer the customer perception of quality
CO5 Course CO4 CO3 CO3 CO4 CO5 CO6 CO7 CO8 CO8 CO4 CO1 CO2 CO3 CO4 CO4 CO4 CO1 CO2 CO3	Design heat exchangers using LMTD and NTU methods. I5ME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications. Design brakes and clutches. Design hydrodynamic bearings for different applications using the manufacturers, catalogue. Develop proficiency to generate production drawings using CAD software. Become good design engineers through learning the art of working in a team ISME653-Metal Forming Able to understand the concept of different metal forming processs. Able to approach metal forming processes both analytically and numerically Able to design metal forming processes Able to develop approaches and solutions to analyze metal forming processes and the associated problems and flaws ISME664-Total Quality Management Explain the various approaches of TQM Infer the customer perception of quality Analyze customer needs and perceptioons to design feedback systems.
CO5 Course CO4 CO3 CO4 CO5 CO6 CO7 CO8 CO8 CO4 CO1 CO2 CO3 CO4 CO4 CO4 CO4 CO1 CO2 CO3 CO4	Design heat exchangers using LMTD and NTU methods. ISME64-Design of Machine Elements-II Apply engineering design tools to product design. Design mechanical systems involving springs, belts and pulleys. Design different types of gears and simple gear boxes for different applications. Design brakes and clutches. Design hydrodynamic bearings for different applications. Select Anti friction bearings for different applications using the manufacturers, catalogue. Develop proficiency to generate production drawings using CAD software. Become good design engineers through learning the art of working in a team ISME653-Metal Forming Able to understand the concept of different metal forming process. Able to design metal forming processes Able to develop approaches and solutions to analyze metal forming processes and the associated problems and flaws ISME664-Total Quality Management Explain the various approaches of TQM Infer the customer perception of quality Analyze customer needs and perceptions to design feedback systems. Apply statistical tools for continuous improvement of systems

	MECHANICAL ENGINEERING
Course Code	15MEL67-Heat Transfer lab
CO1	Conduct experiments to determine convective heat transfer coefficient for free and forced convection and correlate with theoretical values.
CO2	Estimate the effective thermal resistance in composite slabs and efficiency in pin-fin
CO3	Determine surface emissivity of a test plate
CO4	Estimate performance of a refrigerator and effectiveness of fin
CO5	Calculate temperature distribution of study and transient heat conduction through plane
	wall, cylinder and fin using numerical approach.
Course Code	15MEL68-Modeling & Analysis lab
	Use the modern tools to formulate the problem, and able to create geometry, descritize,
CO1	Apply boundary condition to solve problems of bars, truss, beams, plate to find stress with different loading conditions.
CO2	Demonstrate the deflection of beams subjected to point, uniformly distributed and
002	varying loads further to use the available results to draw shear force and bending moment diagrams.
CO3	Analyze the given problem by applying basic principle to solve and demonstrate 1D and 2D heat transfer with conduction and convection boundary conditions
	Carry out dynamic analysis and finding natural frequencies for various boundary
CO4	conditions and also analyze with forcing function.
Course Code	15ME71- Energy Engineerng

	MECHANICAL ENGINEERING
CO1	Summarize the basic concepts of thermal energy systems,
CO2	Identify renewable energy sources and their utilization.
CO3	Understand the basic concepts of solar radiation and analyze the working of sthermal systems.
CO4	
04	Understand principles of energy conversion from alternate sources inclugeothermal, ocean, biomass, biogas.
CO5	Understand the concepts and applications of fuel cells, thermoelectric coMHD generator.
CO6	Identify methods of energy storage for specific applications
Course	15MF72-Fluid Power Systems
Code	15WE/2-Fluid I ower Systems
CO1	Identify and analyse the functional requirements of a flfor a given application.
CO2	Visualize how a hydraulic/pneumatic circuit will work to accomplish the function.
CO3	Design an appropriate hydraulic or pneumatic circuit or combination circuit like electro-hydraulics, electro-
005	pneumatics for a given application
CO4	Select and size the different components of the circuit
CO5	Develop a comprehensive circuit diagram by integrating the components selected for the given application.
Course	15ME73- Control Engineering
Code	
CO1	Recognize control system and its types, control actions
CO2	Determine the system governing equations for physical models(Electrical, Thermal, Mechanical, Electro
	Mechanical)
CO3	Calculate the gain of the system using block diagram and signal flow graph
CO4	Illustrate the response of 1st and 2nd order systems
CO5	Determine the stability of transfer functions in complex domain and frequency domain
CO6	Employ state equations to study the controllability and observability
a	
Course	15ME742-Tribology
Course Code	15ME742-Tribology
Course Code CO1	15ME742-Tribology Understand the fundamentals of tribology and associated parameters.
Course Code CO1 CO2	15ME742-Tribology Understand the fundamentals of tribology and associated parameters.
Course Code CO1 CO2 CO3	15ME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application.
Course Code CO1 CO2 CO3 CO4	15ME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application
Course Code CO1 CO2 CO3 CO4 CO5	15ME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology
Course Code CO1 CO2 CO3 CO4 CO5 Course	15ME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology
Course Code CO1 CO2 CO3 CO4 CO5 Course Code	15ME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology 15ME754 - Mechatronics
Course Code CO1 CO2 CO3 CO4 CO5 Course Code CO1	ISME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology ISME754 - Mechatronics Illustrate various components of Mechatronics systems.
Course Code CO1 CO2 CO3 CO4 CO5 Course Code CO1 CO2	ISME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology ISME754 - Mechatronics Illustrate various components of Mechatronics systems. Assess various control systems used in automation.
Course Code CO1 CO2 CO3 CO4 CO5 Course Code CO1 CO2	15ME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology 15ME754 - Mechatronics Illustrate various components of Mechatronics systems. Assess various control systems used in automation. Develop mechanical, hydraulic, pneumatic and electrical control systems.
Course Code CO1 CO2 CO3 CO4 CO5 Course Code CO1 CO2 CO3 Course Code CO1 CO2 CO3 Course	15ME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology 15ME754 - Mechatronics Illustrate various components of Mechatronics systems. Assess various control systems used in automation. Develop mechanical, hydraulic, pneumatic and electrical control systems.
Course Code CO1 CO2 CO3 CO4 CO5 Course Code CO1 CO2 CO3 Course Code CO1 CO2 CO3 Course Code	15ME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology 15ME754 - Mechatronics Illustrate various components of Mechatronics systems. Assess various control systems used in automation. Develop mechanical, hydraulic, pneumatic and electrical control systems. 15MEL76 - Design Laboratory
Course Code CO1 CO2 CO3 CO4 CO5 Course COde CO1 CO2 CO3 Course Code CO1 CO2 CO3 Course Code CO3 Course Code CO1	15ME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology 15ME754 - Mechatronics Illustrate various components of Mechatronics systems. Assess various control systems used in automation. Develop mechanical, hydraulic, pneumatic and electrical control systems. 15ME176 - Design Laboratory To understand the working principles of machine elements such as Governors, Gyroscopes etc.,
Course Code CO1 CO2 CO3 CO4 CO5 Course CO4 CO1 CO2 CO3 Course Code CO1 CO2 CO3 Course Code CO1 CO2 CO3 Course Code CO1 CO2	15ME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology 15ME754 - Mechatronics Illustrate various components of Mechatronics systems. Assess various control systems used in automation. Develop mechanical, hydraulic, pneumatic and electrical control systems. 15MEL76 - Design Laboratory To understand the working principles of machine elements such as Governors, Gyroscopes etc., To identify forces and couples in rotating mechanical system components.
Course Code CO1 CO2 CO3 CO4 CO5 Course Code CO1 CO2 CO3	15ME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology 15ME754 - Mechatronics Illustrate various components of Mechatronics systems. Assess various control systems used in automation. Develop mechanical, hydraulic, pneumatic and electrical control systems. 15MEL76 - Design Laboratory To understand the working principles of machine elements such as Governors, Gyroscopes etc., To identify forces and couples in rotating mechanical system components. To identify vibrations in machine elements and design appropriate damping methods and to determine the
Course Code CO1 CO2 CO3 CO4 CO5 Course Code CO1 CO2 CO3	15ME742-Tribology ISME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology ISME754 - Mechatronics Illustrate various components of Mechatronics systems. Assess various control systems used in automation. Develop mechanical, hydraulic, pneumatic and electrical control systems. ISMET76 - Design Laboratory To understand the working principles of machine elements such as Governors, Gyroscopes etc., To identify forces and couples in rotating mechanical system components. To identify vibrations in machine elements and design appropriate damping methods and to determine the critical speed of a rotating shaft
Course Code CO1 CO2 CO3 CO4 CO5 Course CO4 CO1 CO2 CO3 CO3 CO3 Course CO3 Course Code CO1 CO2 CO3 Course Code CO1 CO2 CO3 CO4	ISME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology ISME754 - Mechatronics Illustrate various components of Mechatronics systems. Assess various control systems used in automation. Develop mechanical, hydraulic, pneumatic and electrical control systems. ISME176 - Design Laboratory To understand the working principles of machine elements such as Governors, Gyroscopes etc., To identify forces and couples in rotating mechanical system components. To identify vibrations in machine elements and design appropriate damping methods and to determine the critical speed of a rotating shaft To measure strain in various machine elements using strain gauges.
Course Code CO1 CO2 CO3 CO4 CO5 Course Code CO1 CO2 CO3 CO4 CO5	ISME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology ISME754 - Mechatronics Illustrate various components of Mechatronics systems. Assess various control systems used in automation. Develop mechanical, hydraulic, pneumatic and electrical control systems. ISME176 - Design Laboratory To understand the working principles of machine elements such as Governors, Gyroscopes etc., To identify forces and couples in rotating mechanical system components. To identify vibrations in machine elements and design appropriate damping methods and to determine the critical speed of a rotating shaft To measure strain in various machine elements using strain gauges. To determine the minimum film thickness, load carrying capacity, frictional torque and pressure distribution of
Course Code CO1 CO2 CO3 CO4 CO5 Course CO4 CO1 CO2 CO3 CO1 CO2 CO3 Course Code CO1 CO2 CO3 Course Code CO1 CO2 CO3 Course Code CO1 CO2 CO3 CO4 CO5	ISME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology ISME754 - Mechatronics Illustrate various components of Mechatronics systems. Assess various control systems used in automation. Develop mechanical, hydraulic, pneumatic and electrical control systems. ISME176 - Design Laboratory To understand the working principles of machine elements such as Governors, Gyroscopes etc., To identify forces and couples in rotating mechanical system components. To identify vibrations in machine elements and design appropriate damping methods and to determine the critical speed of a rotating shaft To measure strain in various machine elements using strain gauges. To determine the minimum film thickness, load carrying capacity, frictional torque and pressure distribution of journal bearing.
Course Code CO1 CO2 CO3 CO4 CO5 Course Code CO1 CO2 CO3 Course Code CO1 CO2 CO3 CO4 CO3 CO4 CO5 CO5 CO6	ISME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology ISME754 - Mechatronics Illustrate various components of Mechatronics systems. Assess various control systems used in automation. Develop mechanical, hydraulic, pneumatic and electrical control systems. ISME176 - Design Laboratory To understand the working principles of machine elements such as Governors, Gyroscopes etc., To identify forces and couples in rotating mechanical system components. To identify vibrations in machine elements and design appropriate damping methods and to determine the critical speed of a rotating shaft To measure strain in various machine elements using strain gauges. To determine the minimum film thickness, load carrying capacity, frictional torque and pressure distribution of journal bearing. To determine strain induced in a structural member using the principle of photo-elasticity.
Course Code CO1 CO2 CO3 CO4 CO5 Course Code CO1 CO2 CO3 CO2 CO3 CO2 CO3 CO4 CO2 CO3 CO4 CO5 CO4 CO5 CO6 CO6 Course	15ME742-Tribology Understand the fundamentals of tribology and associated parameters. Apply concepts of tribology for the performance analysis and design of componentsexperiencing relative motion Analyse the requirements and design hydrodynamic journal and plane slider bearingfor a given application. Select proper bearing materials and lubricants for a given tribological application Apply the principles of surface engineering for different applications of tribology ISME754 - Mechatronics Illustrate various components of Mechatronics systems. Assess various control systems used in automation. Develop mechanical, hydraulic, pneumatic and electrical control systems. ISME176 - Design Laboratory To understand the working principles of machine elements such as Governors, Gyroscopes etc., To identify forces and couples in rotating mechanical system components. To identify vibrations in machine elements and design appropriate damping methods and to determine the critical speed of a rotating shaft To measure strain in various machine elements using strain gauges. To determine the minimum film thickness, load carrying capacity, frictional torque and pressure distribution of journal bearing. To determine strain induced in a structural member using the principle of photo-elasticity.

	MECHANICAL ENGINEERING
CO1	Generate CNC Lathe part program for Turning, Facing, Chamfering, Grooving, Step turning, Taper turning,
	Circular interpolation etc.
CO2	Generate CNC Mill Part programming for Point to point motions, Line motions, Circular interpolation, Contour
	motion, Pocket milling- circular, rectangular, Mirror commands etc.
CO3	Use Canned Cycles for Drilling, Peck drilling, Boring, Tapping, Turning, Facing, Taper turning Thread cutting
	etc. Simulate Tool Dath for different Machining operations of small components using CNC Latha & CNC Milling
CO4	Machine
	Use high end CAM packages for machining complex parts: use state of art cutting tools and related cutting
CO5	parameters; optimize cycle time
CO6	Understand & write programs for Robot control; understand the operating principles of hydraulics, pneumatics
	and electro pneumatic systems. Apply this knowledge to automate & improve efficiency of manufacturing.
Course	
Code	15ME81 - OPERATIONS RESEARCH
Coue	
CO1	Understand the meaning, definitions, scope, need, phases and techniques of operations research.
602	Formulate as L.P.P and derive optimal solutions to linear programming problems by graphical method, Simplex
02	method, Big-M method and Dual Simplex method
CO3	Formulate as Transportation and Assignment problems and derive optimum solutions for transportation,
005	Assignment and travelling salesman problems
CO4	Solve problems on game theory for pure and mixed strategy under competitive environment.
CO5	Solve waiting line problems for M/M/1 and M/M/K queuing models
CO6	Construct network diagrams and determine critical path, floats for deterministic and PERT networks including
000	crashing of Networks
C07	Determine minimum processing times for sequencing of n jobs-2 machines, n jobs-3 machines, n jobs-m
	machines and 2 jobs-n machines using Johnson's algorithm
Course	15ME82 - ADDITIVE MANUFACTURING
Code	Industand the additive memory featuring analogoes, not menoisation and neurolar metallurgy analogoes
C01	Understand the additive manufacturing process, polymerization and powder metanurgy process
CO2	Acquire knowledge on CNC and Automation
005	ACQUIE KIOWIEUge OII CINC AIIO AUTOIIIATIOII.

	MECHANICAL ENGINEERING
Course Code	15ME832 - EXPERIMENTAL STRESS ANALYSIS
CO1	Explain characterize the elastic behavior of solid bodies.
CO2	Describe stress strain analysis of mechanical systems using electrical resistance strain gauges.
CO3	Discuss skills for experimental investigations an accompanying laboratory course is desirable
CO4	Discuss experimental investigations by predictions by other methods.
CO5	Describe various coating techniques.