COMPUTER SCIENCE AND ENGINEERING		
COURSE CODE	18CPS13/23-C PROGRAMMING FOR PROBLEM SOLVING	
CO1	Illustrate simple algorithms from the different domains such as mathematics, physics etc	
CO2	construct programming solution to the given problem using C	
CO3	Identify and correct the syntax and logical errors in C programs	
CO4	Modularise the given problems using functions and structures.	
COURSE CODE	18CPS17/27-C PROGRAMMING LABORATORY	
CO1	Write Algorithms, flowchats, programs for simple problems	
CO2	Correct Syntax and logical errors to execute a program	
CO3	write irerative and wherever possible recursive programs	
CO4	Demonstrate use of functions, arrays, strings, structures and pointers in problem solving	
COURSE CODE	18CS32-DATA STRUCTURES AND APPLICATIONS	
CO1	Use different types of data structures, operations and algorithms	
CO2	Apply searching and sorting operations on files	
CO3	Use stack, Queue, Lists, Trees and Graphs in problem solving	
CO4	Implement all data structures in a high-level language for problem solving.	
COURSE CODE		
CO1	Design and analyze application of analog circuits using photo devices, timer IC, power supply and regulator IC and op-amp.	
CO2	Explain the basic principles of A/D and D/A conversion circuits and develop the same.	
CO3	Simplify digital circuits using Karnaugh Map , and Quine-McClusky Methods	
	Explain Gates and flip flops and make us in designing different data processing circuits,	
CO4	registers and counters and compare the types.	
CO5	Develop simple HDL programs	
COURSE CODE	, , , , , , , , , , , , , , , , , , ,	
CO1	Explain the basic organization of a computer system.	
	Demonstrate functioning of different sub systems, such as processor, Input/output, and	
CO2	memory. Illustrate hardwired control and micro programmed control, pipelining, embedded	
CO2	and other computing systems.	
CO3	Design and analyse simple arithmetic and logical units.	
COURSE CODE	ů	
CO1	Design a software system, component, or process to meet desired needs within realistic constraints.	
CO2	Assess professional and ethical responsibility	
CO3	Function on multi-disciplinary teams	
CO4	Use the techniques, skills, and modern engineering tools necessary for engineering practice	
CO5	Analyze, design, implement, verify, validate, implement, apply, and maintain software	
COLIBRE CODE	systems or parts of software systems 18CS36-DISCRETE MATHEMATICAL STRUCTURES	
COURSE CODE CO1	Use propositional and predicate logic in knowledge representation and truth verification.	
CO2	Demonstrate the application of discrete structures in different fields of computer science.	
CO3	Solve problems using recurrence relations and generating functions.	

CO4	Application of different mathematical proofs techniques in proving theorems in the courses.
CO5	Compare graphs, trees and their applications.
COURSE CODE	
CO1	Use appropriate design equations / methods to design the given circuit.
CO2	Examine and verify the design of both analog and digital circuits using simulators.
CO3	Make us of electronic components, ICs, instruments and tools for design and testing of
	circuits for the given the appropriate inputs.
CO4	Compile a laboratory journal which includes; aim, tool/instruments/software/components
	Compile a laboratory journal which includes, ann, too/instruments/software/components
	used, design equations used and designs, schematics, program listing, procedure followed,
	relevant theory, results as graphs and tables, interpreting and concluding the findings.
COURSE CODE	
CO1	Analyze and Compare various linear and non-linear data structures
CO2	Code, debug and demonstrate the working nature of different types of data structures and their applications
CO3	Implement, analyze and evaluate the searching and sorting algorithms
CO4	Choose the appropriate data structure for solving real world problems
COURSE CODE	
CO1	Describe computational solution to well known problems like searching, sorting etc.
CO2	Estimate the computational complexity of different algorithms.
CO3	Devise an algorithm using appropriate design strategies for problem solving.
COURSE CODE	
CO1	Demonstrate need for OS and different types of OS
CO2	Apply suitable techniques for management of different resources
CO3	Use processor, memory, storage and file system commands
CO4	Realize the different concepts of OS in platform of usage through case studies
COURSE CODE	
	Describe the architectural features and instructions of ARM microcontroller
CO1	
CO2	Apply the knowledge gained for Programming ARM for different applications.
CO3	Interface external devices and I/O with ARM microcontroller.
CO4	Interpret the basic hardware components and their selection method based on the
G0.5	characteristics and attributes of an embedded system.
CO5	Develop the hardware /software co-design and firmware design approaches.
CO6	Demonstrate the need of real time operating system for embedded system applications
COURSE CODE	E 15CS45-OBJECT ORIENTED CONCEPTS
CO1	Explain the object-oriented concepts and JAVA.
CO2	Develop computer programs to solve real world problems in Java.
	Develop simple GUI interfaces for a computer program to interact with users, and to
CO3	understand the event-based GUI handling principles using swings
COURSE CODE	
CO1	Explain the various components of data communication.
CO2	Explain the fundamentals of digital communication and switching.
CO2	Compare and contrast data link layer protocols.
CO3	Summarize IEEE 802.xx standards
COURSE CODE	IJCSETT DESIGN AND ANALTSIS OF ALGORITHINS LABORATORI

CO1	Design algorithms using appropriate design techniques (brute-force, greedy, dynamic
	programming, etc.)
CO2	Implement a variety of algorithms such assorting, graph related, combinatorial, etc., in a high
	level language.
CO3	Analyze and compare the performance of algorithms using language features.
CO4	Apply and implement learned algorithm design techniques and data structuresto solve real-
	world problems.
COURSE CODE	15CSL48-MICROCONTROLLER AND EMBEDDED SYSTEMS LABORATORY
CO1	Develop and test program using ARM7TDMI/LPC2148
CO2	Conduct the following experiments on an ARM7TDMI/LPC2148 evaluation board using
	evaluation version of Embedded 'C' & Keil Uvision-4 tool/compiler